

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE				Cou	Course Family			Credit Weight			S	SEMEST	ER	Co Da	mpilat te	ion	
Computer Architecture and Systems		49202030	4920203001			Compulsory Study Program Subjects			T=3	P=0	ECTS=4	1.77	:	1	Jur 202	ne 26, 22				
AUTHORIZAT	ΓΙΟΝ		SP Develo	oper			-			С	ours	e Clu	ster C	oordinat	or S	Study P	rogram	Coord	dinator	r
		Dr. Elly Matul Imah, M.Kom, Hasanuddin Al- Habib, M.Si				D	Dr. Elly Matul Imah, M.Kom Yuliar			Yuliani	'uliani Puji Astuti, S.Si., M.Si.									
Learning model	Case Studies																			
Program	PLO study pro	aram v	which is charged to the course																	
Learning Outcomes	Program Object	gram which is charged to the course tives (PO)																		
(PLO)	PO - 1	Able to	o master the	theore	etical o	concer	ots of '	the ro ⁱ	le and	func	tion o	f the	units th	nat make	up a c	omputer	rsystem	n		
	PO - 2		o master the																	
	PO - 3	Able to	o identify the	e hardv	vare n	eeds o	of a co	ompute	er orga	niza	tion.									
	PO - 4	Able to	o solve prob	lems re	elated	to dat	a scie	ence u	sing a	oprop	oriate	tech	nology							
	PLO-PO Matrix	[
	PO Matrix at th	e end	P.O)-1)-2)-3	arning	2	3	4)	6	7	8	W S S	eek	0 11		13		15		
Short Course Description	This course teac systems includin component that r	g Bus	Systems, Ir	nternal	and E	Extern	al Me	emory	and Ir	nput/	Outp	ut. Fu	ırtherm	lore, this	course	, e studie	es the m	nain ro	ble of e	each
References	Main :																			
	 Stalling, Pearson 			Comput	ter Or	ganiza	ation	and A	Archite	cture	: Des	signir	ng for	Performa	nce E	leventh	Edition	ı. Unit	ed Sta	ites:
	Supporters:								_										_	_
	1. Carl Har 2. John L H																	tion. M	cGraw	-Hill
Supporting lecturer	Dr. Wiyli Yustant Widi Aribowo, S. Dr. Elly Matul Im. Harmon Prayogi, Hasanuddin Al-H Fadhilah Qalbi A	Ť., M.Ť ah, M.K M.Sc. abib, N	Кот. И.Si.																	

Week-	Final abilities of each learning stage	Eval	uation	Learr Studer	lp Learning, ning methods, nt Assignments, timated time]	Learning materials	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)	[References]		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Students are able to identify the functions of computer systems and the history of computer development	 Explain the terms in computer systems Details the functions of a computer system Describe the structure of a computer system Examines the evolution of computer systems 	Form of Assessment : Participatory Activities	Scientific approach, presentation, question and danswer, discussion, and problem- based learning 3 X 50		Material: Chapter 1 : Basic concepts and computer evolution; Chapter 2 : Performance Concepts; Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	3%	
2	Students are able to formulate the components of a computer system	 Identify the concept of Von Neumann computer components Examining the basic components of a computer system 	Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion, and problem- based learning 3 X 50		Material: Chapter 3 : A top-level view of computer function and interconnection Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	5%	
3	Students are able to apply Arithmetic and Logic operations.	 Performing calculations with arithmetic operations, addition of multiplication in binary Perform calculations of logical operations. 	Criteria: Independent task Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50		Material: Chapter 9: Number system; Chapter 10: Computer Arithmatics; Chapter 11: Digital logic; Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	7%	
4	Students are able to identify the working principles of the memory system in a computer.	 Explain the different types of memory in a computer system Explain the working system of internal memory technology Explain the working system of external memory technology Diagram the memory addressing process 	Criteria: Independent Assignment: Practice Questions Form of Assessment : Participatory Activities	Scientific approach, presentation, question and danswer, discussion, and problem- based learning 3 X 50		Material: Chapter 4: Cache memory; Chapter 5 : Internal memory; Chapter 6: External memory; Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	7%	

5	Students are able to identify input/output in a computer work system	 Be able to describe external devices as computer input Able to explain the input/output module Able to explain the types of input/output Able to explain the operating system Able to explain memory management in the input/output process 	Criteria: Independent Assignment: Practice Questions Form of Assessment : Participatory Activities, Tests	Scientific approach, presentation, question and answer, discussion, and problem- based learning 3 X 50	Material: Chapter7: Input/Output; Chapter 8 : Operating system support;Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	10%
6	Students are able to explain the characteristics and functions of the instruction set	 Details the characteristics of a computer's Instruction Set Details the function of a computer's instruction set Explain the principles of machine instructions Analyze the differences in characteristics and functions in x86 and ARM instruction sets 	Criteria: Independent Assignment: Practice Questions Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion, and problem- based learning 3 X 50	Material: Chapter12 : InstructionSets :characteristicsand functionsReferences:Stalling, Williams.2019. ComputerOrganization andArchitecture:Designing forPerformanceEleventh Edition.United States:Pearson PrenticeHall	7%
7	Students are able to explain the format and addressing mode in the instruction set	 Explain the addressing modes Analyze the differences in addressing modes on x86 and ARM Analyze the differences in instruction formats on x86 and ARM 	Form of Assessment : Practice / Performance	Scientific approach, presentation, question and answer, discussion, and problem- based learning 3 X 50	Material: Chapter 13 : Instruction Sets : Addressing modes and formats Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	10%
8	Midterm exam		Form of Assessment : Test	2 X 50	Material: Chapters 1-13 Bibliography: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	0%
9	Students are able to understand the structure and function of the processor	 Explain processor organization Explain the organization of the register Explain the instruction cycle and pipeline Explains the x86 and ARM processor families 	Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 4 X 50	Material: Chapter14: ProcessorStructure andFunctionReferences:Stalling, Williams.2019. ComputerOrganization andArchitecture:Designing forPerformanceEleventh Edition.United States:Pearson PrenticeHall	5%

10	Students are able to understand the concept of Reduced Instruction Set Computers (RISC)	 Describes the characteristics of instruction execution Explain the use of large register files Explain RISC architecture Explain RISC Fxplain RISC Explains MIPS R4000 and SPARC Explain the pipeline in the processor organization Explain the differences between CISC, RISC, and contemporary systems 	Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 4 X 50	Material: Chapter 15: Reduced Instruction Set Computer Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	5%
11	Students are able to understand instruction level parallelism and superscalar on computers	 Explains issues related to instruction-level parallelism Explaining the Intel Core monoarchitecture Explaining ARM Cortex-A8 and ARM Cortex-M8 	Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50	Material: Chapter 16: Instruction- Level Parallelism and Superscalar Processors Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	5%
12	Students understand the concept of control unit operation	 Explain the concept of micro- operations Explain how processor control works 	Criteria: Independent task Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50	Material: Chapter 19: Control unit operation and microprogrammed control Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	7%
13	Students understand microprogram control	 Explain microprogram control Explain the concept of microinstruction sequencing Explain the concept of microinstruction execution 	Criteria: Independent task Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50	Material: Chapter 21: Microprogrammed Control References: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	7%
14	Students are able to understand the concept of parallel processing	 Can explain the concept of multiprocessing Distinguish between single processor and multi processor and multi processor Mention the advantages of multiprocessors Explain the concept of parallel processing 	Criteria: Independent task Form of Assessment : Participatory Activities	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50	Material: Chapter 17 : Parallel processing Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	7%

15	Students are able to understand the concept of multicore computers	 Explain hardware and software performance issues Explain multicore and heterogeneous multicore organization Describes the multicore architecture on the Intel Core i7- 5960X, ARM Cortex-A15 MPcore, and IBM Z13 mainframes 	Criteria: Independent task Form of Assessment : Participatory Activities, Practice/Performance	Scientific approach, presentation, question and answer, discussion and problem- based learning 2 X 50	Material: Chapter 18: Multicore Computer Reference: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	15%
16	Final exams		Form of Assessment : Test		Material: Chapters 15-20 Bibliography: Stalling, Williams. 2019. Computer Organization and Architecture: Designing for Performance Eleventh Edition. United States: Pearson Prentice Hall	0%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	77.5%
2.	Practice / Performance	17.5%
3.	Test	5%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.