

## Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

Document Code

## SEMESTER LEARNING PLAN

| Courses                        |                                                                                                                                                                                                                          | CODE                                                                                                                               |                                                                                 |                 | C                           | Cours            | e Far                    | nily            | С               | redit             | Weigl           | ht                                | S       | SEMES            | TER         | Cor<br>Dat | npilat<br>e | ion    |        |     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|-----------------------------|------------------|--------------------------|-----------------|-----------------|-------------------|-----------------|-----------------------------------|---------|------------------|-------------|------------|-------------|--------|--------|-----|
| Matrix Algebra                 |                                                                                                                                                                                                                          | 4920203008                                                                                                                         |                                                                                 | 000             | Compulsory<br>Study Program |                  | T=                       | =3 F            | P=0 E           | CTS=4.            | 77              | 2                                 | 2       | Jan<br>202       | uary 2<br>4 | 2,         |             |        |        |     |
| AUTHORIZA                      | ΓΙΟΝ                                                                                                                                                                                                                     |                                                                                                                                    | SP Develo                                                                       | oper            |                             |                  |                          | subjet          | 15              | Со                | urse            | Clus                              | ster Co | ordinat          | or S        | Study F    | Progra      | m Coo  | ordina | tor |
|                                |                                                                                                                                                                                                                          | Yuliani Puji Astuti, S.Si., M.Si                                                                                                   |                                                                                 |                 |                             | .Si.             | Dr. Atik Wintarti, M.Kom |                 |                 | Kom               | ١               | Yuliani Puji Astuti, S.Si., M.Si. |         |                  |             | .Si.       |             |        |        |     |
| Learning<br>model              | Case Studies                                                                                                                                                                                                             |                                                                                                                                    | <u> </u>                                                                        |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
| Program                        | PLO study pro                                                                                                                                                                                                            | PLO study program which is charged to the course                                                                                   |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
| Learning<br>Outcomes<br>(PLO)  | PLO-6                                                                                                                                                                                                                    | PLO-6 Has professional responsibility and can make informed judgments in computing practices based on legal and ethical principles |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PLO-9                                                                                                                                                                                                                    | Able to apply data science principles to solve problems                                                                            |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PLO-12 Able to design and develop algorithms for various purposes such as big data analysis, artificial intelligence, databases, data mining, inferential statistics, algorithm design and analysis, and data warehouse. |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | Program Objectives (PO)                                                                                                                                                                                                  |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PO - 1 Responsible for completing every task assigned                                                                                                                                                                    |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PO - 2 Able to use software to solve problems regarding matrices                                                                                                                                                         |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PO - 3                                                                                                                                                                                                                   | - 3 Able to design problem solving in data processing using matrix methods                                                         |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PO - 4                                                                                                                                                                                                                   | Able to                                                                                                                            | Able to demonstrate knowledge and insight into matrices related to data science |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | PLO-PO Matrix                                                                                                                                                                                                            |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                |                                                                                                                                                                                                                          |                                                                                                                                    | P.O<br>PO-1<br>PO-2<br>PO-3<br>PO-4                                             |                 | PL                          | _O-6             |                          |                 | PLO-            | 9                 |                 | PL                                | .0-12   |                  |             |            |             |        |        |     |
|                                | PO Matrix at th                                                                                                                                                                                                          | ne end o                                                                                                                           | of each lea                                                                     | rning           | g sta                       | ge (S            | Sub-F                    | PO)             |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                |                                                                                                                                                                                                                          | 1                                                                                                                                  |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                |                                                                                                                                                                                                                          |                                                                                                                                    | P.0                                                                             |                 |                             |                  |                          | -               |                 | _                 |                 | We                                | eek     |                  | 4.0         | 10         |             | 45     | 4.0    | ]   |
|                                |                                                                                                                                                                                                                          |                                                                                                                                    | . 4                                                                             | 1               | 2                           | 3                | 4                        | 5               | 6               | 1                 | 8               | 9                                 | 10      | 11               | 12          | 13         | 14          | 15     | 16     | -   |
|                                |                                                                                                                                                                                                                          |                                                                                                                                    | -1                                                                              | <u> </u>        | <u> </u>                    |                  |                          | _               |                 |                   |                 |                                   |         | +                |             |            |             |        |        | -   |
|                                |                                                                                                                                                                                                                          | PO                                                                                                                                 | -2                                                                              |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        | -   |
|                                |                                                                                                                                                                                                                          | PO                                                                                                                                 | -3                                                                              |                 |                             |                  |                          |                 |                 |                   |                 |                                   | -       | $\left  \right $ |             | <u> </u>   |             |        |        | -   |
|                                |                                                                                                                                                                                                                          | PO                                                                                                                                 | -4                                                                              |                 | L                           |                  |                          | <u> </u>        |                 |                   | <u> </u>        | <u> </u>                          |         |                  |             |            |             |        |        | ]   |
| Short<br>Course<br>Description | This course is a use of related co                                                                                                                                                                                       | case m<br>mputer a                                                                                                                 | ethod cours<br>applications                                                     | e wh<br>is als  | ich st<br>o intr            | udies<br>oduce   | the<br>ed in             | conce<br>this c | ept of<br>ourse | matr              | ices a          | and 1                             | their a | pplicatio        | ns re       | lated to   | o data      | proces | ssing. | The |
| References                     | Main :                                                                                                                                                                                                                   |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                | 1. Hartmar<br>2. Anton, H                                                                                                                                                                                                | n, G. 201<br>I., Rorre                                                                                                             | <br> 1 . Fundam<br>s, C. 2014.                                                  | entals<br>Eleme | s of N<br>entary            | latrix<br>/ Line | Algel<br>ar Alg          | ora 3r<br>gebra | d Edit<br>11th  | tion. (<br>Editio | Creati<br>on. W | ive C<br>′iley                    | Comma   | n                |             |            |             |        |        |     |
|                                | Supporters:                                                                                                                                                                                                              |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |
|                                |                                                                                                                                                                                                                          |                                                                                                                                    |                                                                                 |                 |                             |                  |                          |                 |                 |                   |                 |                                   |         |                  |             |            |             |        |        |     |

|                                     | <ol> <li>Lay, D.C., Lay, S. R. McDonald, J.J. 2015. Linear Algebra and Its Applications 5th Edition. Pearson</li> <li>https://www.geogebra.org/t/matrices</li> <li>Lopez, C. P. 2014. MATLAB Matrix Algebra. APress</li> <li>Klein, P. N. 2013. Coding the Matrix: Linear Algebra Through Applications to Computer Science. Newtonian Press</li> <li>Vinod, H. D. 2011. Hands on Matrix Algebra Using R . World Scientific</li> </ol> |                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                       |                                                                                           |                                                                                                                                                                       |                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Support<br>lecturer                 | ing Dr. Agung Lukito<br>Yuliani Puji Astut<br>Hasanuddin Al-H<br>Fadhilah Qalbi A<br>Ulfa Siti Nuraini,                                                                                                                                                                                                                                                                                                                               | , M.S.<br>i, S.Si., M.Si.<br>abib, M.Si.<br>nnisa, S.T., M.Sc.<br>S.Stat., M.Stat.                                                                                                                                                                                                                                                          |                                                                                 |                                                       |                                                                                           |                                                                                                                                                                       |                          |
| Final abilities of<br>each learning |                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evalua                                                                                                                                                                                                                                                                                                                                      | ation                                                                           | H<br>Lea<br>Stud                                      | Help Learning,<br>arning methods,<br>lent Assignments,<br>Estimated time]                 | Learning<br>materials                                                                                                                                                 | Assessment<br>Weight (%) |
|                                     | (Sub-PO)                                                                                                                                                                                                                                                                                                                                                                                                                              | Indicator                                                                                                                                                                                                                                                                                                                                   | Criteria & Form                                                                 | Offline(<br>offline)                                  | Online ( online )                                                                         | [References]                                                                                                                                                          |                          |
| (1)                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                   | (3)                                                                                                                                                                                                                                                                                                                                         | (4)                                                                             | (5)                                                   | (6)                                                                                       | (7)                                                                                                                                                                   | (8)                      |
| 1                                   | Understanding<br>systems of linear<br>equations (KNO-1)                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>1.1. Explain the<br/>system of linear<br/>equations (SPL)</li> <li>2.2. Using<br/>matrices to solve<br/>SPL</li> <li>3.3. Using<br/>elementary row<br/>operations and<br/>Gaussian<br/>elimination to<br/>solve the SPL<br/>problem</li> <li>4.4. Explain the<br/>existence and<br/>singularity of the<br/>SPL solution</li> </ol> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Tutorial on using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Systems of<br>Linear<br>Equations<br>References:<br>Hartman, G.<br>2011 .<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons | 3%                       |
| 2                                   | Understanding<br>systems of linear<br>equations (KNO-1)                                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>1.1. Explain the<br/>system of linear<br/>equations (SPL)</li> <li>2.2. Using<br/>matrices to solve<br/>SPL</li> <li>3.3. Using<br/>elementary row<br/>operations and<br/>Gaussian<br/>elimination to<br/>solve the SPL<br/>problem</li> <li>4.4. Explain the<br/>existence and<br/>singularity of the<br/>SPL solution</li> </ol> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Tutorial on using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Matrix<br>arithmetic<br>Reference:<br>Hartman, G.<br>2011.<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons                | 3%                       |
| 3                                   | Using SPL to solve<br>real problems (SKI-<br>2)                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>1.1. Convert real problems into SPL form</li> <li>2.2. Complete the SPL modeling results</li> <li>3.3. Interpret SPL solutions in real situation language</li> </ul>                                                                                                                                                               | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Tutorial on using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material: SPL<br>Application<br>Reference:<br>Hartman, G.<br>2011 .<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons                    | 4%                       |

| 4 | Understand the<br>basic concepts of<br>matrices (KNO-1)                                                     | <ul> <li>1.1. Explain<br/>addition and<br/>multiplication of<br/>scalar matrices</li> <li>2.2. Explain matrix<br/>multiplication</li> <li>3.3. Visualize<br/>matrix operations<br/>in 2D</li> <li>4.4. Explain the<br/>SPL vector<br/>solution</li> </ul>                                                                   | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities            | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Matrix<br>definition<br>Matrix notation<br>Matrix notation<br>Matrix order<br>Types of<br>matrices<br>Addition and<br>multiplication<br>scalar matrices<br>Multiplication<br>matrices<br>Visualization of<br>matrix<br>operations in<br>2D SPL vector<br>solutions<br><b>References:</b><br>Hartman, G.<br>2011.<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons | 4%  |
|---|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5 | Understanding the<br>inverse and<br>determinant of<br>matrices (KNO-1)                                      | <ul> <li>1.1. Explain matrix<br/>inverse</li> <li>2.2. Summarize<br/>the properties of<br/>the inverse<br/>matrix</li> <li>3.3. Explain the<br/>determinant of<br/>the matrix</li> <li>4.4. Summarize<br/>the properties of<br/>matrix<br/>determinants</li> <li>5.5. Use Cramer's<br/>rule to solve the<br/>SPL</li> </ul> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities            | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Inverse matrix<br>and its<br>properties<br>Matrix<br>determinant<br>and its<br>properties<br>Cramer's rule<br><b>Bibliography:</b><br>Hartman, G.<br>2011.<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons                                                                                                                                                       | 4%  |
| 6 | Understand the<br>concept of vectors<br>in 2-space, 3-<br>space, n-space and<br>their operations<br>(KNO-1) | <ul> <li>1.1. Explain the concept of vectors in 2-space, 3-space, n-space</li> <li>2.2. Explain the operations of vector scalar addition and multiplication in 2-space, 3-space, n-space</li> <li>3.3. Summarize the properties of vector operations in 2-space, 3-space, 3-space, n-space</li> </ul>                       | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities            | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Vectors in 2-<br>space, 3-<br>space, n-space<br>Addition and<br>scalar<br>multiplication<br>operations of<br>vectors in 2-<br>space, 3-<br>space, n-space<br>References:<br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley                                                                                                                         | 4%  |
| 7 | Understanding real<br>vector spaces and<br>their sub-spaces<br>(KNO-1)                                      | <ul><li>1.1. Explain real vector spaces</li><li>2.2. Explain subspace</li><li>3.3. Infer the properties of subspace</li></ul>                                                                                                                                                                                               | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities            | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material: Real<br>vector space<br>Sub-space<br>References:<br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley                                                                                                                                                                                                                                                    | 4%  |
| 8 | Understanding real<br>vector spaces and<br>their sub-spaces<br>(KNO-1)                                      | Midterm exam                                                                                                                                                                                                                                                                                                                | Criteria:<br>Writing test<br>Form of<br>Assessment :<br>Participatory<br>Activities, Tests | UTS<br>150                                            | UTS<br>150                                                                                           | Material: Real<br>vector space<br>Sub-space<br>References:<br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley                                                                                                                                                                                                                                                    | 20% |

| 9  | Understand the<br>concept of basis<br>and dimension<br>(KNO-1)                                 | <ul> <li>1.1. Explain linear freedom</li> <li>2.2. Explain the basis for vector spaces</li> <li>3.3. Summarize the properties of the basis for vector spaces</li> <li>4.4. Explain the dimensions of vector space</li> <li>5.5. Determine the basis and dimensions of the vector space</li> </ul>                                          | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Linear freedom<br>Basis of Vector<br>Space<br>Dimensions of<br>Vector Space<br><b>References:</b><br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley | 3% |
|----|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10 | Understand the<br>concept of basis<br>and dimension<br>(KNO-1)                                 | <ul> <li>1.1. Explain linear freedom</li> <li>2.2. Explain the basis for vector spaces</li> <li>3.3. Summarize the properties of the basis for vector spaces</li> <li>4.4. Explain the dimensions of vector space</li> <li>5.5. Determine the basis and dimensions of the vector space</li> </ul>                                          | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Linear freedom<br>Basis of Vector<br>Space<br>Dimensions of<br>Vector Space<br><b>References:</b><br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley | 3% |
| 11 | Understand the<br>concept of Inner<br>Product Space and<br>the Gram-Schmidt<br>process (KNO-1) | <ul> <li>1.1. Explain the concept of Internal Product</li> <li>2.2. Summarize the properties of the inner product</li> <li>3.3. Explain orthogonality in Inner Product space</li> <li>4.4. Explain the Gram-Schmidt orthogonalization process</li> <li>5.5. Use the Gram-Scmidt process to generate a set of orthogonal vectors</li> </ul> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Products in the<br>Orthogonality<br>of the Gram-<br>Schmidt<br>Process<br><b>References:</b><br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley      | 2% |
| 12 | Understand the<br>concept of Inner<br>Product Space and<br>the Gram-Schmidt<br>process (KNO-1) | <ul> <li>1.1. Explain the concept of Internal Product</li> <li>2.2. Summarize the properties of the inner product</li> <li>3.3. Explain orthogonality in Inner Product space</li> <li>4.4. Explain the Gram-Schmidt orthogonalization process</li> <li>5.5. Use the Gram-Scmidt process to generate a set of orthogonal vectors</li> </ul> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Products in the<br>Orthogonality<br>of the Gram-<br>Schmidt<br>Process<br><b>References:</b><br>Anton, H.,<br>Rorres, C.<br>2014.<br>Elementary<br>Linear Algebra<br>11th Edition.<br>Wiley      | 2% |

| 13 | Understanding<br>Linear<br>Transformations<br>(KNO-1)                                                    | <ul> <li>1.1. Explain the<br/>Cartesian plane<br/>transformation</li> <li>2.2. Summarize<br/>the properties of<br/>linear<br/>transformations</li> <li>3.3. Visualize<br/>vectors in 3D</li> </ul>                                                                                                                                                                                       | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities                          | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Cartesian<br>plane<br>transformation<br>Linear<br>transformation<br>Vector<br>visualization<br><b>References:</b><br>Hartman, G.<br>2011.<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons                                                | 6%  |
|----|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 14 | Understanding<br>Eigen Values and<br>Eigen Vectors<br>(KNO-1)                                            | <ol> <li>1.1. Explain the concept of Eigen Values and Eigen Vectors of a square matrix</li> <li>2.2. Determine the Eigenvalues and Eigenvectors of a square matrix</li> <li>3.3. Summarize the properties of Eigen Values and Eigen Values and Eigen Values</li> <li>4.4. Explain the concept of diagonalization of a square matrix</li> <li>5.5. Diagonalize a square matrix</li> </ol> | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities                          | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Eigenvalues<br>and<br>Eigenvectors of<br>matrices<br>Properties of<br>Eigenvalues<br>and<br>Eigenvectors of<br>Diagonalization<br>matrices<br><b>References:</b><br>Hartman, G.<br>2011.<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons | 4%  |
| 15 | Using computer<br>programs to solve<br>problems related to<br>matrices (SOC-2,<br>SKI-1-2 and COM-<br>2) | 1. Using computer<br>programs to solve<br>problems related to<br>matrices                                                                                                                                                                                                                                                                                                                | Criteria:<br>Non Test<br>Form of<br>Assessment :<br>Participatory<br>Activities, Practical<br>Assessment | Lectures<br>and<br>Questions<br>and<br>Answers<br>150 | Lectures and videos<br>using LMS,<br>Asynchronous or<br>Synchronous,<br>Questions and Answers<br>150 | Material:<br>Computer<br>program to<br>solve problems<br>References:<br>Hartman, G.<br>2011 .<br>Fundamentals<br>of Matrix<br>Algebra 3rd<br>Edition.<br>Creative<br>Commons                                                                                                         | 4%  |
| 16 |                                                                                                          | Final exams                                                                                                                                                                                                                                                                                                                                                                              | Form of<br>Assessment :<br>Participatory<br>Activities                                                   | UAS<br>150                                            | UAS<br>150                                                                                           |                                                                                                                                                                                                                                                                                      | 30% |

Evaluation Percentage Recap: Case Study

|    | <u> </u>                 |            |
|----|--------------------------|------------|
| No | Evaluation               | Percentage |
| 1. | Participatory Activities | 88%        |
| 2. | Practical Assessment     | 2%         |
| 3. | Test                     | 10%        |
|    |                          | 100%       |

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific
- to the study material or learning materials for that course.
  Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and

unbiased. Criteria can be quantitative or qualitative.

- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%. 12. TM=Face to face, PT=Structured assignments, BM=Independent study.