

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Chemistry Study Program

Document Code

SEMESTER LEARNING PLAN

										1			r		r	
Courses		CODE			Сог	irse F	amily			Cred	lit We	ight	SEME	STER	Com Date	pilation
Chemical Kin	etics	472010319	98							T=3	P=0	ECTS=4.77		4	Janu 2024	ary 15,
AUTHORIZAT	ION	SP Develo	oper					Course Cluster Coordinator			ordinator		' Progra linator	m		
																<u> </u>
		Prof. Dr. S	uyono, M.F	'a.					Prof. Dr	. Suyc	ono, M	.Pa.		Dr. Ama	iria, m.	SI.
Learning model	Case Studies															
Program Learning	PLO study pro	gram that is char	ged to the	cour	se											
Outcomes (PLO)	PLO-6	education, both formal and non-formal				ienc	e, contin	ue to	develo	op and learn t	hrough	out life to	o contir	nue		
	PLO-7	Able to apply logic technology by pay problems.														
	PLO-8	Mastering the ba communicating the	sics of scie em both ora	entific n ally and	nethoo d in wi	ds, de riting ι	signin using i	g an nfori	d carryin mation a	g out nd cor	reseai nmuni	ch, compiling	l scienti ology	fic repor	ts and	
	PLO-11	Mastering the consynthesis and cha											f separa	ation, an	alysis,	
	Program Object	tives (PO)														
	PO - 1	Students have the formulate actions of										e able to dev	elop a c	onceptu	al fram	ework to
	PO - 2	Students are skill (inductive dimension the field of reaction	on) and su													
	PO - 3	Students have kno and submit theore kinetics														
	PO - 4	Students have the temperature and c (including photoch	atalyst as													
	PLO-PO Matrix															
		P.0	PL	O-6		PL	0-7		PLO-8 PLO-11			PLO-11				
		PO-1														
		PO-2														
		PO-3														
		PO-4														
	PO Matrix at th	e end of each lea	rning stag	ge (Su	ıb-PO)										
			_			-										
		P.O					1			Week						
			1 2	3	4	5	6	7	8	9	10	11 12	13	14	15	16
		PO-1														
		PO-2														
		PO-3														
		PO-4														
Short Course Description		eoretical studies of s for the discussion a											vst as v	vell as i	nterpre	etation of

Referen	ces Main :						
	2. Atkins, F	P. W. 1995. Psysical Ch	al Kinetics and Reaction M emistry . Third Edition. Nev istry . Third Edition.Tokyo:	wYork: W. H. Free	man and Company.Cas		
Support lecturer	Nur Hayati, S.Si Bertha Yonata, S	, M.Si.		1			
Week-	Final abilities of each learning stage	Eva	luation	Learn Studen	p Learning, ing methods, t Assignments, t <mark>imated time]</mark>	Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (online)	1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	 1.1. Determine the physical meaning of the reaction rate law. 2.2. Skilled in using tools to determine reaction orders to be able to write rate laws based on empirical facts (inductive dimension). 3.3. Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. 4.4. Able to collaborate and be responsible in studying reaction rates as a function of concentration. 		Form of Assessment : Participatory Activities	Discussion regarding the selection of methods and how to determine the correct reaction order. 3 X 50		Material: Determination order References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	5%
2	 Determine the physical meaning of the reaction rate law. Skilled in using tools to determine reaction orders to be able to write rate laws based on empirical facts (inductive dimension). Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. A ble to collaborate and be responsible in studying reaction rates as a function of 		Criteria: Participation, assignments Form of Assessment : Participatory Activities	 Discussion regarding the selection of methods and how to determine the correct reaction order and communicate it. Calculate the reaction order, if given data on the function of concentration versus time. X 50 		Material: Determination order References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	10%

3	 Determine the physical meaning of the reaction rate law. Skilled in using tools to determine reaction orders to be able to write rate laws based on empirical facts (inductive dimension). Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. Able to collaborate and be responsible in studying reaction rates as a function of concentration. St Write a draft document to communicate the results of the problem solving 	 The accuracy of formulating the reaction rate law, if given data on the function of concentration versus time. Skilled in using tools in determining orders. Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. Able to collaborate and be responsible in studying reaction rates as a function of concentration. 	Criteria: Participation, assignments Form of Assessment : Participatory Activities, Portfolio Assessment	 Calculate the reaction order, if given data on the function of concentration versus time. Formulate the reaction rate law, if given data on the function of concentration versus time. Structured tasks (BKT KF3 KPM) 3 X 50 	Material: Reaction Rate Law (r) Function: x(t); r = d/dt (x) r = k [ax]α[bx]□ References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	5%
4	 carried out 1. Determine the physical meaning of the reaction rate law. 2.2. Skilled in using tools to determine reaction orders to be able to write rate laws based on empirical facts (inductive dimension). 3.3. Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. 4.4. Able to collaborate and be responsible in studying reaction rates as a function of concentration. 5.5. Write a draft document to communicate the results of the problem solving carried out 	The accuracy of using rate laws to predict the rate of reactions at other known concentrations.	Criteria: Participation, assignments Form of Assessment : Participatory Activities, Portfolio Assessment	1. Calculate the reaction order, if given data on the function of concentration versus time. 2. Formulate the reaction rate law, if given data on the function of concentration versus time. 3. Calculate the value of the reaction rate constant (k). Use the rate law to predict the reaction rate at other known concentrations. [Studying; practicum] 4. Structured assignments (BKT KF3 KA Part IV pp. 14- 15) 3 X 50	Material: Reaction Rate Law (r) Function: x(t); r = d/dt (x) r = k [ax]q[bx]□ Determination of reaction order References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	5%

5	 Determine the physical meaning of the reaction rate law. Skilled in using tools to determine reaction orders to be able to write rate laws based on empirical facts (inductive dimension). Communicate experimental results related to determining the reaction order in order to determine the reaction rate law. A ble to collaborate and be responsible in studying reaction. Write a draft document to communicate the results of the problem solving carried out 	The accuracy of using rate laws to predict the rate of reactions at other known concentrations.	Criteria: Participation, assignments Form of Assessment : Participatory Activities, Portfolio Assessment	 Formulate the reaction rate law, if data is given as a function of concentration versus time. Calculate the value of the reaction rate constant (k). Use the rate law to predict the rate of a reaction at another known concentration. Skilled in using laboratory equipment to determine the reaction rate in order to determine the reaction order and the correct method for calculating the reaction order 3 X 50 		Material: Reaction Rate Law (r) Function: x(t); r = d/dt (x) r = k [ax]q[bx] Determination of reaction order References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	10%
---	---	--	---	---	--	---	-----

6	1.Determine the	1.Accuracy of	Criteria:	1. Predict the	Material:	10%
	physical	using Arrhenius	The assessment is carried out on the	reaction rate at	Function: r(T)	
	meaning of the	law to analyze	following aspects:	the second	Arrhenius	
	reaction rate	data (more than	ionormig appearer	temperature	Law: $\ln k = \ln k$	
	function against	two) k functions	Form of Assessment :	(T2) if the reaction rate	A – Ea/RT Reference:	
	the reaction	on temperature.	Participatory Activities	value at the	Wilkinson,	
	temperature.	2.Accuracy of		initial	Frank. 1975.	
	2.Communicate	using Arrhenius		temperature	Chemical	
	experimental	law to analyze		(T1) and the	Kinetics and	
	results related to	data (two data)		reaction	Reaction	
	the function of	of k function on		temperature	Mechanisms.	
	temperature on	temperature.		coefficient are	Victoria: Van	
	reaction rates so	3.3. Communicate		known.	Nostrand	
	as to be able to	experimental		2. Modify	Reinhold	
	develop a	results related to		Arrhenius' law	Company.	
	conceptual	the function of		into a linear		
	framework for	temperature on		equation that		
	formulating	reaction rates so		can be used to		
	actions or	as to be able to		determine the		
	alternative	develop a		Ea value		
	actions in	conceptual		(activation		
	solving chemical	framework for		energy) and		
	problems in life.	formulating		the A value (preexponential		
		actions or		factor) of a		
		alternative		reaction.		
		actions in		3. Predict the		
		solving chemical		reaction rate at		
		problems in life.		the second		
		P		temperature		
				(T2) if you		
				know the		
				reaction rate at		
				the initial		
				temperature		
				(T1), the Ea		
				value, and the		
				gas constant.		
				4. Calculate		
				the Ea value of		
				a reaction, if		
				given reaction rate data at two		
				different		
				temperatures.		
				5. Calculate		
				the reaction		
				rate at a		
				certain		
				temperature		
				(under the		
				same		
				conditions), if		
				data on the		
				reaction rate at		
				two different		
				temperatures		
				is given.		
				6. Skilled in		
				using		
				laboratory equipment to		
				determine		
				reaction rates		
				at several		
				temperatures.		
				3 X 50		

7	1.Determine the	 The accuracy of 	Criteria:	1. Application		Material:	5%
	physical	using Arrhenius'	Participation and tasks	of Arrhenius'		Function:	
	meaning of the	law to predict		law to predict		r(catalyst)	
	reaction rate	changes in	Form of Assessment :	changes in		Arrhenius	
	function on a	reaction rates	Participatory Activities	reaction rates		Law: $\ln k = \ln k$	
	catalyst.	due to the		due to the		A – Ea/RT	
	2.Skilled in using	addition of a		addition of a		Catalyst	
	tools to	catalyst at a		catalyst at a		reduces the	
	determine the	certain		certain		value of Ea	
	effect of	temperature.		temperature. 2. Calculate		References:	
	catalysts on	2.2. Skilled in		Ea, if you know		Wilkinson, Frank. 1975.	
	reaction rates	using tools to		the magnitude		Chemical	
	based on	determine the		of the change		Kinetics and	
	empirical facts	effect of		in the reaction	1	Reaction	
	(inductive	catalysts on		rate due to the		Mechanisms.	
	dimension).	reaction rates		addition of a		Victoria: Van	
	3.Communicate	based on		catalyst at a		Nostrand	
				certain		Reinhold	
	experimental	empirical facts		temperature.		Company.	
	results related to	(inductive		3. Skilled in			
	the function of	dimension).		using			
	catalysts on	3.3. Communicate		laboratory			
	reaction rates so	experimental		equipment to			
	as to be able to	results related to		determine			
	develop a	the function of		reaction rates			
	conceptual	catalysts on		with the			
	framework for	reaction rates so		addition of			
	formulating	as to be able to		catalysts			
	actions or	develop a		[Lecture;			
	alternative	conceptual		practicum]			
	actions in	framework for		4. BKT KF3 KA			
	solving chemical	formulating		structured			
	problems in life.	actions or		assignments pp. 18-20			
	4.Able to	alternative		рр. 18-20 3 X 50			
	collaborate and	actions in		3 7 30			
	be responsible	solving chemical					
	in assessing	problems in life.					
	reaction rates as	4.4. Able to					
	a catalyst	collaborate and					
	function.	be responsible					
		in assessing the					
		reaction rate as					
		a function of the					
		catalyst.					
L			<u>.</u>	+	+		

		[r	1
8	UTS	1.The accuracy of	Criteria:	2 X E0			5%
		formulating the	1.The assessment is	3 X 50			
		reaction rate	carried out on the following aspects:				
		law, if given data on the	2.Participation				
		function of	during lectures is				
		concentration	carried out through				
		versus time.	observation				
		2.The accuracy of	(weight 2)UTS and				
		formulating the	UAS, carried out				
		reaction rate	once, assessing all				
		law, if given	relevant indicators				
		data on the function of	through written exams, averaged				
		concentration	and given a weight				
		versus time.	(2))Assignments				
		3.The accuracy of	are given a weight				
		formulating the	(3)The final NA is				
		reaction rate	(participation value				
		law, if given	x2) (Assignment				
		data on the	score x 3) (UTS				
		function of	score x 2) UAS				
		concentration versus time.	score (3) divided by 10				
		4.The accuracy of	by 10				
		using rate laws	Form of Assessment :				
		to predict the	Test				
		rate of reactions					
		at other known					
		concentrations.					
		5.Use the rate law					
		to predict the rate of a					
		reaction at					
		another known					
		concentration					
		6.Accuracy of					
		using Arrhenius'					
		law to analyze					
		data (more than					
		two) k functions					
		on temperature.					
		 Accuracy of using Arrhenius⁶ 					
		law to analyze					
		data (two data)					
		of k function on					
		temperature.					
		8.The accuracy of					
		using Arrhenius'					
		law to predict					
		changes in					
		reaction rates due to the					
		addition of a					
		catalyst at a					
		certain					
		temperature.					
9	1.Determine how	Testing the	Criteria:	1. Write down		Material:	5%
	to determine the	correctness of the reaction mechanism	Participation and tasks	the steps for		Interpretation	
	mechanism	design, both simple	Form of Assessment :	testing the correctness of		of the reaction rate	
	using the reaction kinetics	reactions and complex (chain)	Participatory Activities	the reaction		law on	
	approach.	reactions.		mechanism		reaction	
	2.Write a			design, if given		mechanisms.	
	statement and			data on reactant		Reference:	
	include the			concentrations		Wilkinson, Frank. 1975.	
	reasons given			and rate values		Chemical	
	for saying that			for reactions		Kinetics and	
	the statement is			whose		Reaction	
	false.			stoichiometry is also known.		Mechanisms. Victoria: Van	
				2. Formulate		Nostrand	
				assumptions		Reinhold	
				so that the		Company.	
				reaction			
				mechanism			
				design created has scientific			
				truth			
				(supported by			
				facts).			
				[Lecture]			
					1		
				 Structured assignments 			
				assignments BKT KF3 KA			
				assignments BKT KF3 KA pp. 21-22			
				assignments BKT KF3 KA			

10	Write down how to determine the mechanism using the reaction kinetics approach.	Testing the correctness of the reaction mechanism design, both simple reactions and complex (chain) reactions.	Criteria: Participation and tasks Form of Assessment : Participatory Activities	1. Write down the steps for testing the correctness of the reaction mechanism design, if given data on reactant concentrations and rate values for reactions whose stoichiometry is also known. 2. Formulate assumptions so that the reaction mechanism design created has scientific truth (supported by facts). 3 X 50	Material: Interpretation of the reaction rate law on reaction mechanisms. Reference: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	5%
11	Write down how to determine the mechanism using the reaction kinetics approach.	 Testing the correctness of the reaction mechanism design, both simple reactions and complex (chain) reactions. Testing quantitative measures to gain advantages in implementing the chain length concept. 	Criteria: Participation and tasks Form of Assessment : Participatory Activities	 Write down the different characteristics of the initiation, propagation and termination stages that make up a parallel reaction. Describe the physical meaning of the concept of chain length in chain reactions. Establish quantitative measures to gain benefits in implementing the chain length concept. X 50 	Material: Interpretation of the reaction rate law on reaction mechanisms. Reference: <i>Wilkinson,</i> <i>Frank.</i> 1975. <i>Chemical</i> <i>Kinetics and</i> <i>Reaction</i> <i>Mechanisms.</i> <i>Victoria: Van</i> <i>Nostrand</i> <i>Reinhold</i> <i>Company.</i>	10%
12	Write down how to determine the mechanism using the reaction kinetics approach.	 Testing quantitative measures to gain advantages in implementing the chain length concept. Determining alignment with ideas about reaction mechanisms. 	Criteria: Participation and tasks Form of Assessment : Participatory Activities	 Establish quantitative measures to gain profits in implementing the chain length concept. Predict the supporting facts that must exist for ideas about the mechanism of radical recombination reactions to be accepted. Predict the supporting facts that must exist in order to think about the unimolecular decomposition reaction mechanism). [Lecture] 3 X 50 	Material: Interpretation of the reaction rate law on reaction mechanisms. Reference: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	10%

13	Write the mechanism for	1.Evaluate the	Criteria: Participation and tasks	1. Predict the supporting	Material: Reaction	5%
	mechanism for homogeneous catalysis reactions in solution.	types of activated complexes in the Herzfeld mechanism (general homogeneous catalytic reactions in solution). 2.Evaluating the Arrhenius complex type Herzfeld mechanism for the case of extremely different substrate and catalyst concentrations.	Participation and tasks Form of Assessment : Participatory Activities	supporting facts that must be present to evaluate the type of activated complex in the Herzfeld mechanism (general homogeneous catalysis reaction in solution) including the type of Arrhenius complex or van't Hoff complex. 2. Predict the supporting facts that must exist in the Herzfeld mechanism of the Arrhenius complex type for the case that the substrate concentration is much greater than the catalyst concentration. 3. Predict the supporting facts that must exist in the Arrhenius complex type for the case that the substrate concentration. 3. Predict the supporting facts that must exist in the Arrhenius complex type Herzfeld mechanism for the case that the substrate concentration is much smaller than the catalyst concentration. ILecture] 3 X 50	Reaction Mechanism for homogeneous catalysis reactions in solution . Reference: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	
14	Write down the mechanisms of acid or base catalyzed reactions.	 Accuracy of determining intermediate and solvent species for different types of catalyst (strong acid, weak acid, strong base, or weak base). Distinguish between protolytic type and prototropic type acid catalysis mechanisms. 	Criteria: Participation and tasks	1. Write down the intermediate and solvent species for different types of catalysts (strong acid, weak acid, strong base, or weak base), if given the general acid or base catalyzed reaction mechanism. 2. Predict the supporting facts that must be present to distinguish between protolytic type acid catalysis mechanisms (transfer of protons to the solvent) and protoropic type (transfer of protons to the solvet). [Lecture] 1 × 1	Material: Reaction Mechanism for acid catalysis reactions. References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	5%

15	 Write down the mechanisms of acid or base catalyzed reactions. Proposing theoretical arguments (reaction mechanisms) to explain the empirical facts that occur (deductive dimension). Able to collaborate and be responsible in reviewing the interpretation of reaction rate laws to the discussion and design of reaction mechanisms (including photochemistry). 	 Distinguish between specific protolytic type and general protolytic type base catalysis mechanisms. Proposing theoretical arguments (reaction mechanisms) to explain the empirical facts that occur (deductive dimension). Able to collaborate and be responsible in reviewing the interpretation of reaction rate laws to the discussion and design of reaction mechanisms (including photochemistry). 	Criteria: Participation and tasks Form of Assessment : Participatory Activities	Predict the supporting facts that must be present to differentiate the specific protolytic type and general protolytic type base catalysis mechanisms. [Lecture] 3 X 50	Material: Reaction Mechanism for base catalysis reactions. References: Wilkinson, Frank. 1975. Chemical Kinetics and Reaction Mechanisms. Victoria: Van Nostrand Reinhold Company.	10%
16	UAS	UAS		2 X 50		0%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	85%
2.	Portfolio Assessment	10%
3.	Test	5%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used 2. for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- Forms of assessment: test and non-test.
- Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field 8. Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative 9. Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%. 12. TM=Face to face, PT=Structured assignments, BM=Independent study.