

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Chemistry Study Program

Document Code

UNESA	Ondergraduate Chemistry Study Program													
		S	EME:	STER	LEA	RNI	NG F	PLA	N					
Courses		CODE			Course	Family	,	Cred	it Wei	ght	SEMESTE		Compilat Date	ion
Analytical Ch Analysis	emistry II: Quantitative	472010	03042					T=3	P=0	ECTS=4.77	3		July 18, 2	.024
AUTHORIZATION		SP Developer			Course	Course Cluster Coordinator				Study Program Coordinator				
							Dr. Amaria, M.Si.							
Learning model	Project Based Learnin	g												
Program Learning	PLO study program t	that is c	harged t	o the cou	ırse									
Outcomes (PLO)	Program Objectives	(PO)												
(1.20)	PLO-PO Matrix													
		P.O												
	PO Matrix at the end	of each	learning	g stage (S	Sub-PO)									
	_													7
	P	.0	1 1				W	eek						
		1	2	3 4	5 6	7	8 9	10) 1	1 12	13 14	15	16	
Short Course Description	Study of the basic princ the analysis process, e precipitation titration, or master related concepts and skills scientifically.	valuatior omplexin	of analysig titration	sis results, , redox tit	, chemical ration), fol	calcul llowed	ations, gr by labora	avime	tric an activitie	d volumetric es supports	analysis (a so that stud	cid I Ients	oase titra s are abl	tion, e to
References	Main :													
	Basset, J., et.al.1 Longman Group Limited Day, Jr, Erlangga. Skoog, Douglas	o R.A., da	ın Underw	ood, A.L.,	2002.Quai	ntitative	eAnalysis	. Sixth	Ed. (A	Alih bahasa:	Sopyan, I.)	•		
	Supporters:													
Supporting lecturer	Prof. Dr. Hj. Sri Poedjias Prof. Dr. Pirim Setiarso, Rusmini, S.Pd., M.Si. Prof. Dr. Nita Kusumaw	M.Si.												

	FIOI. DI. IVIIA Kusuinawaii, 3.3i., IVI.3C.							
Final abilities of each learning stage		Eval	uation	Learn Studen	p Learning, ing methods, t Assignments, timated time]	Learning materials [References	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline (Online (online)]		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Understand the basic skills that must be possesse in quantitative analysis and methods of volumetric analys	possessed in quantitative analysis and	Criteria: Student answers are included in the participation value	Lecture, question and answer, 3 X 50 demonstration			0%	

2	Understand the principles of volumetry in calculating the concentration of a substance in the analyte	Apply volumetric principles in calculating the concentration of a substance in the analyte	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
3	Understand the principles of gravimetry in calculating the levels of a substance in an analyte	Apply gravimetric principles in calculating the levels of a substance in the analyte	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
4	Understand the principles of neutralization titration in calculating the levels of a substance	Explain the principles of monoprotic neutralization titration	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, demonstrations 3 X 50		0%
5	Understand the principles of neutralization titration in calculating the levels of a substance	Explain the principles of diprotic neutralization	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions 3 X 50		0%
6	Understand the principles of neutralization titration in calculating the levels of a substance	Explain the principles of polyprotic neutralization	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
7	Understand the principles of neutralization titration in calculating the levels of a substance	Apply the principles of neutralization titration in calculating the levels of a substance in everyday life	Criteria: Prelab results, post lab, and assignment grades are entered	practical 6 X 50		0%
8	UTS	meeting indicators 1-7	Criteria: Student scores are included in UTS scores	2 X 50 test		0%
9	Understand the principles of precipitation titration (argentometry) in calculating the concentration of a substance	Explain the principles of precipitation titration (argentometry)	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, demonstrations 3 X 50		0%
10	Understand the principles of precipitation titration (argentometry) in calculating the concentration of a substance	Explain concentration calculations in precipitation titration (argentometry)	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions 3 X 50		0%
11	Understand the principles of complexing titration in calculating the concentration of a substance	Explain the principles of complexing titration	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
12	Understand the principles of precipitation titration (argentometry) and the principles of complexation titration in calculating the concentration of a substance	Applying the principles of precipitation titration (argentometry) and Applying the principles of complexing titration in calculating the levels of a substance in everyday life	Criteria: Prelab results, post lab, and assignment grades are entered	practicum 3 X 50		0%

13	Understand the principles of redox titration in calculating the levels of a substance	Explain the principles of redox titration: permanganometry	are included in the	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
14	Understand the principles of redox titration in calculating the levels of a substance	Explain the principles of redox titration: iodo iodimetry	Criteria: Student answers are included in the participation value	Lectures, questions and answers, practice questions, discussions, 3 X 50		0%
15	Understand the principles of redox titration in calculating the levels of a substance	Apply the principles of redox titration in calculating the levels of a substance in everyday life	Criteria: Prelab results, post lab, and assignment grades are entered	practical 6 X 50		0%
16	UAS	meeting indicators 9-15	Criteria: entrance value of UAS components	2 X 50 test		0%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
		0%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which
 are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and
 knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. **Forms of learning:** Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.