

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Chemistry Education Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		co	DE			Co	ourse	e Fan	nily		Cree	lit We	eight		SE	EMES	TER	Cor Dat	npilati e	on
Quantum Chemistry		842	20402324					lsory n Su			T=2	P=0	EC	TS=3.18		2		Jan 202	uary 1, 3	,
AUTHORIZA	TION	SP	Develope	r		1	5.5.		·		e Clu	ster C	coord	inator	St	tudy F	Progra	_	ordina	ato
		Dr.	Dr. I Gusti Made Sanjaya, M.Si.				P	Prof. Dr. Suyono, M.Pd.				Pi	Prof. Dr. Utiya Azizah, M.Po							
Learning model	Project Base	d Learning																		
Program	PLO study program which is charged to the course																			
Learning Outcomes (PLO)	PLO-6																			
(PLO)	PLO-8	Continue education, both formal and informal (CPL 8) Mastering the basics of scientific methods, designing and carrying out research, compiling scientific reports and communicating them both orally and in writing by utilizing information and communication technology in the field of education (CPL 6)																		
	PLO-10	Able to design, implement, evaluate, learn and develop chemistry learning media by utilizing Information and Communication Technology (CPL 4)																		
	Program Ob	Program Objectives (PO)																		
	PO - 1																			
	PO - 2	Students are able to produce precise quantum chemical conclusions about structures and bonds, physical or chemical, in the analysis of various materials																		
	PO - 3	Students are able to master the basic concepts and principles of quantum chemistry to describe atomic structure, chemical bonds, molecular structure, molecular symmetry, spectroscopy and molecular interactions.																		
	PO - 4																			
	PLO-PO Mat	PLO-PO Matrix																		
			P.0		PL	.0-6			PLC)-8		PL	0-10							
			PO-1																	
			PO-2																	
			PO-3																	
			PO-4																	
			-	1																
	PO Matrix at	the end of	each lear	ning	sta	.ge (S	Sub-	PO)												
								-												
			P.0									Weel	<							
			F	1	2	3	4	5	6	7	8	9	10	11 1	.2	13	14	15	16	
		PO-1																		
		PO-2																		
		PO-3																		
		PO-4																		
		1																		

Referen	ces	Main :						
		Mortimer	, R.G. 2008, Ph	ysical Chemistry, 3th e	dition, London: E	11th edition. UK: Oxford Isevier Inc. Pearson Education, Inc.	University Press	
		Supporters:						
Support lecturer		Dr. I Gusti Made Findiyani Ernawa	Sanjaya, M.Si. iti Asih, S.Pd., M	I.Pd.				
Week-	eac stag		E	valuation	Lean Studer	Ip Learning, ning methods, nt Assignments, timated time]	Learning materials [References	Assessmen Weight (%)
	(Su	b-PO)	Indicator	Criteria & Form	Offline(offline)	Online (online)	1	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	qu lec ac	astering the lantum chemistry sture hievement 'gets	Analyzing the achievements of quantum chemistry lectures		Presentations and discussions related to RPS discussions regarding lecture achievement targets, teaching materials at each meeting, and lecture evaluations. 2x150'			0%
2	pri	entify the basic inciples of antum chemistry	Evaluate the difference between the time- dependent Schrodinger equation and the time- independent Schrodinger equation	Criteria: Participation Assessment and Assignments to work on student worksheets Form of Assessment : Participatory Activities, Portfolio Assessment	Presentation and discussion on quantum postulates and Schrodinger's equation 2x50'		Material: Basics of Quantum Chemistry Bibliography: Mortimer, RG 2008, Physical Chemistry, 3th edition, London: Elsevier Inc. Material: Basics of Quantum Chemistry Bibliography: Levine, Ira N. 2014, Quantum Chemistry, 7th edition, New York: Pearson Education, Inc. Material: Basics of Quantum Chemistry References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	5%

3		Determine the wave function of particles, energy and density of particles in 1, 2 and 3 dimensional boxes and their applications in chemistry	Criteria: Participation Assessment and Assignments to complete student worksheets Form of Assessment : Participatory Activities	Presentation and discussion on the application of quantum chemistry to the translational motion of particles in boxes of dimensions 1, 2 and 3 2x50'	Material: Quantum translational motion References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	5%
4	Can apply quantum chemistry to vibrational motion	Determine the wave function of particles and the energy levels of vibrational motion	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation by providing an analogy of vibrational motion in everyday life and discussion of 2 X 50	Matter: Application of quantum chemistry to vibrational motion References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	5%
5	Can apply quantum chemistry to rotational motion	Determine the particle wave function and rotational energy levels	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities, Portfolio Assessment	Presentation by providing an analogy of rotational motion in daily life and discussion	Material: Application of quantum chemistry to rotational motion Reference: <i>Mortimer, RG</i> 2008, <i>Physical</i> <i>Chemistry, 3th</i> <i>edition,</i> <i>London:</i> <i>Elsevier Inc.</i>	5%
6	Can determine the structure and spectra of the hydrogen atom	Determine the structure, shape and energy of atomic orbitals, and hydrogen spectra	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion of solving the case of 2 X 50 hydrogen atomic spectra	Material: Determination of the structure and spectra of the hydrogen atom. Reference: Levine, Ira N. 2014, Quantum chemistry, 7th edition, New York: Pearson Education, Inc.	0%
7	Can determine the structure and spectra of complex atoms	Analyzing orbital and term symbol approaches	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion 2 X 50	Material: Determination of complex atomic structures and spectra References: <i>Levine, Ira N.</i> 2014, <i>Quantum</i> <i>chemistry, 7th</i> <i>edition, New</i> <i>York: Pearson</i> <i>Education,</i> <i>Inc.</i>	5%
8			Criteria: UTS Assessment			0%

9	Understand valence bond theory or VBT	Explain VBT for diatomic molecules and polyatomic molecules	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion of case solutions on how chemical species have a tendency to reach stability through VBT 2 X 50	Material: Understanding valence bond theory or VBT References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	15%
10	Understanding MOT for diatomic molecules	Write the electronic configuration of a diatomic molecule	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion of case solving regarding the prediction of the existence of diatomic molecules and their 2 X 50 magnetic properties	Material: Understanding MOT for diatomic molecules References: Levine, Ira N. 2014, Quantum chemistry, 7th edition, New York: Pearson Education, Inc.	10%
11	Understanding MOT for polyatomic molecules	Describe the electronic structure of polyatomic molecules	Criteria: Participation Assessment and assignments for working on LKM	Presentation and discussion	Material: Understanding MOT for polyatomic molecules References: <i>Mortimer,</i> RG 2008, <i>Physical</i> <i>Chemistry,</i> 3th <i>edition,</i> <i>London:</i> <i>Elsevier Inc.</i>	5%
12	Understand the basic principles of molecular symmetry	Determine the elements and operations of molecular symmetry	Criteria: Participation Assessment and assignments for working on LKM	Presentation and discussion	Material: Understanding the basic principles of molecular symmetry . References: Material: Understanding the basic principles of molecular symmetry References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	5%
13	Can apply symmetry and symmetry groups of a molecule	Analyzing the symmetry group of a molecule	Criteria: Participation Assessment and assignments for working on LKM	Presentation and discussion	Material: Application of symmetry and symmetry groups of a molecule References: Atkins, P., Paula, J. d., and Keeler, J. 2018. Physical Chemistry, 11th edition. UK: Oxford University Press.	5%

14	Understand the basic principles of molecular spectroscopy	Distinguish between translational, vibrational and rotational spectra	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion 2 X 50	Material: Understanding the basic principles of molecular spectroscopy References: <i>Mortimer, RG</i> 2008, <i>Physical</i> <i>Chemistry, 3th</i> <i>edition,</i> <i>London:</i> <i>Elsevier Inc.</i>	5%
15	Understand molecular interactions that can give rise to electrical properties	Analyze molecular interactions that produce electrical properties	Criteria: Participation Assessment and assignments for working on LKM Form of Assessment : Participatory Activities	Presentation and discussion of case solutions related to the contribution of the conduction band and valence band as determinants of the electricity of a 2 X 50 material		15%
16			Criteria: UAS assessment			0%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	65%
2.	Portfolio Assessment	5%
		70%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.