

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Chemistry Education Study Program

Document Code

SEMESTER L	EARNING	PLAN
------------	---------	------

Courses			CODE			Co	ourse	Family		C	redit W	/eigh	t	SEME	STER	Dat	mpilation te
Monofunction Compounds	nal Organic		842040331	.8				sory Stu n Subje		Т	=3 P=	0 E0	CTS=4.77	,	3	Jun 202	ie 20, 22
AUTHORIZAT	TION		SP Develo	per					Course Cluster Coordinator			Study	Progra	m Coo	rdinator		
			Dr. Mitarlis	, S.Pd.,	M.Si.				Prof	. Dr. S	Suyatno	o, M.S	Si.	Prof.	Prof. Dr. Utiya Azizah, M.Pd.		ıh, M.Pd.
Learning model	Case Studies								1								
Program	PLO study prog	gram	which is cha	arged t	o the cou	irse											
Learning Outcomes (PLO)	PLO-5	perfo	to make decis rmance that h pective (CPL	nas beer													
	PLO-7	scien	ving logical, ci ce, technolog ation in solvin	y and a	rt that pays	s atte	nnovat ntion	tive thin to and a	king in applies	the c huma	ontext	of the value	e developr s appropr	nent or ir iate to th	npleme e field o	ntation f chem	of istry
	PLO-9		ering the prine erate chemica				ty and	d Securi	ty), ma	anagir	ng the la	abora	atory and	using its	equipme	ent as v	vell as how
	PLO-11		to demonstra ples of separ											s and ene	ergy, as	well as	basic
	Program Objec	tives	(PO)														
	PO - 1 Utilize learning resources and ICT to support understanding of concepts in functional organic compounds material through discussion and collaboration																
	PLO-PO Matrix	[
												-					
			P.0		PLO-5		PL	.0-7		PLC	9-9		PLO-11				
			PO-1														
	PO Matrix at the	e end	of each lea	rning s	tage (Sub	o-PO)										
		_		<u> </u>													
			P.0							- T	Veek	-					
				1	2 3	4	5	6	7 8	8	9 1	0	11 12	2 13	14	15	16
		P	D-1														
Object	Ctudy, of knowled	~~ ~ ~ ~		theory f			izetie		nalatu				artice of a			da in th	o olimbotio
Short Course Description	Study of knowled hydrocarbon grou compounds and cooperation and questions	up (all aldehy	kanes, alkene des ketones	es, alky , carbo	nes), alicy xylic acids	clics,	, aron their	natics, derivat	alkyl h ives, a	alides	s, and mines,	the l as w	basics of vell as pr	stereocl oviding s	nemistry skills, so	, phen cientific	ol alcohol attitudes,
References	Main :																
	 Carey, Francis A. 2000.ORGANICCHEMISTRY.fourth edition. TheMcGraw-Hill Companies, Inc. All rights reserved, New York, the United States of America. ISBN 0-07-290501-8,ISBN 0-07-117499-0 (ISE) Fessenden, R. J. dan Fessenden, J. S. (1998).Kimia Organik. Jilid 1. Jakarta: Erlangga Fessenden, R. J. dan Fessenden, J. S. (1998).Kimia Organik. Jilid 1. Jakarta: Erlangga Hart, H., Craine, L. E. &Hart, D. J. (2003).Kimia Organik. Suatu Kuliah Singkat. Edisi ke XI. Jakarta: Erlangga. Michael B. Smith and Jerry March, 2007,Advance Organic ChemistryREACTIONS, Mechanism and structure , 6th edition, Published by John Wiley & Sons, Inc. ,Hoboken, New Jersey Published simultaneously in Canada Solomon, T. W. G. & Fryhle, C. B. (2011).Organic Chemistry.New York: John Wiley& Sons, Inc 																
	Supporters:																
Supporting lecturer	Dr. Mitarlis, S.Pd. Dr.Hj. Rinaningsil Dr. Ratih Dewi Sa Dr. Andika Pramu Nurina Rizka Ran Dr. First Ambar W	n, S.Po aputri, Idya W nadhai	l., M.Pd. S.Si., M.Si. ⁄ardana, S.Si. nia, S.Si. M.S	., M.Si. i.													

Week-	Final abilities of each learning stage	Evalu	ation	Lear Studer	elp Learning, ning methods, nt Assignments, stimated time]	Learning materials [References]	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	[References]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Understand molecular structure and can determine the properties of organic compounds	 1.1. Explain the basis of structural theory, the classical model of the atom. 2.2. Describe the structure of the atom according to Lewis. 3.3. Design the various structures/isomers 4.4. Distinguish between the classical model of atomic theory and the Bohr model. 5.5. Calculate the formal charge of a substance given its molecular formula. 6.6. Explain the nature of electron dualism according to deBroglie 7.7. Make a diagram of the energy levels of electrons in an atom in the path n= 1,2,3, 8.8. Explain that orbital theory is obtained from quantum mechanical atomic theory. 9.9. Explain the structural theory based on the orbital model 10.10. Give an example of atomic structure based on the orbital model 11.11. Explain the orbital shape of the s, p and d subshells. 12.12. Explain the hybridization of an electron. 13.13. Differentiate between sigma bonds and pi bonds, when given the formula for an organic compound. 	Criteria: 1.Assessment criteria: Qualitative for assessment in the form of non- tests or assignments. Quantitative for assessment criteria in the form of tests such as criteria in the UTS or UAS question grid 2.Participation with a weight of 20%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment : Participatory Activities, Portfolio Assessment	Questions and Answers, Class discussions, Discussion and presentation of case study analysis results on organic chemistry		Material: Structural theory: classical model, Bohr atomic model, Bohr atomic model, orbital model, [1, 4, 5] References: <i>Fessenden, RJ</i> <i>and Fessenden, RJ</i> <i>and Fessenden, RJ</i> <i>and Fessenden, IS</i> <i>Organic</i> <i>Chemistry.</i> <i>Volume 1.</i> <i>Jakarta:</i> <i>Erlangga</i> Material: Structural theory: classical model, Bohr atomic model, quantum mechanical atomic model, orbital model, [1, 4, 5] References: <i>Solomon, TWG & Fryhle, CB</i> <i>(2011).Organic</i> <i>Chemistry. New</i> <i>York: John</i> <i>Wiley & Sons, Inc</i>	10%

2	Understand molecular structure and can determine the properties of organic compounds	 1.1. Explain the physical properties of compounds based on their structure 2.2. Explain bond theory. 3.3. Predict the effect of chemical bond length 4.4. Calculate the bond dissociation energy. 5.5. Explain the attraction between molecules 6.6. Explain the molecular orbital (MO) theory. 7.7. Explain the theory of delocalization bonds. 8.8. Distinguish between localized bonds and delocalized bonds when given a molecular structure. 9.9. Describe the resonance structure of organic compounds when given their molecular formula/structure. 	Criteria: 1.In accordance with the assessment guidebook that applies at Unesa 2.Participation with a weight of 20%; UTS with a weight of 30%; UTS and UAS UTS and UAS use multiple choice questions and essays. Form of Assessment : Participatory Activities	Questions and Answers, Class discussions, Completion of project assignments, make a summary in the form of a 3 X 50 mind map or concept map	Material: Structural theory: Physical properties of compounds based on structure, Molecular orbital theory (MO) and delocalization theory Bibliography: Fessenden, RJ and Fessenden, RJ and Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga	5%
3	Explain the nomenclature structure of the isomer concept as well as the properties and synthesis of alkene and alkyne compounds.	 1.1. Describe the structural form of alkane and cyclo alkane compounds, if the molecular formula is given. 2.2. Give the name of the alkane and cyclo alkane compounds, if the structural formula is given or vice versa. 3.3. Create skeletal isomers given their molecular formulas. 4.4. Explain the conformational isomers of cyclo alkane compounds. 5.5. Explain the physical and chemical properties of alkane and cyclo alkane compounds. 6.6. Designing the synthesis of alkane and cyclo alkane compounds. 	Criteria: 1.In accordance with the assessment guidebook that applies at Unesa 2.Participation with a weight of 20%; UTS with a weight of 30%; UTS with a weight of 30%; UTS and UAS use Essay questions; Performance assessments and practicum assessments are carried out in an integrated manner with course learning Form of Assessment : Participatory Activities	Answer questions, class discussions, completion of project assignments, make a summary (in the form of a mind map) Practice questions 3 X 50	Material: Alkanes and cyclo-alkanes: nomenclature, properties, isomers and structure of compound synthesis . Library: Material: Alkanes and cyclo-alkanes: nomenclature, properties, isomers and structure of compound synthesis. Reference: Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga	5%

4	Explain conformational geometric isomers and optical isomers in organic compounds	1. Explain geometric isomers in alkenes and alicyclics 2. Explain the conformation of acyclic and cyclic compounds 3. Explain optical isomers in organic compounds 4. Describe the absolute configuration of a chiral compound	Criteria: 1.In accordance with the research guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 20%; UAS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment Participatory Activities	Answer questions, class discussions, completion of project assignments, make a summary (in the form of a mind map or concept map) Practice questions 3 X 50	Material: Alkenes and alkynes: structure, nomenclature, properties, Isomers and compound synthesis. Reference: Solomon, TWG & Fryhle, CB (2011). Organic Chemistry. New York: John Wiley & Sons, Inc	10%
5	Understanding stereochemical theory includes: geometric isomers in alkenes, geometric isomers in cyclic compounds, conformations of open-chain compounds, forms of cyclic compounds, cyclohexane conformers	 1.1. Explain stereochemistry, geometric isomers in alkenes and cyclic compounds 2.2. Explain conformational isomers 3.3. Analyze the types of isomers in compounds 4.4. Give examples of compounds in each type of isomer 	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; UAS with a weight of 30%; UTS with a weight of 30%; UTS and UAS use Essay questions; Performance assessments and practicum assessments are carried out in an integrated manner with course learning Form of Assessment Participatory Activities	Answer questions, class discussions, completion of project assignments, make a summary (in the form of a concept map) Practice questions 3 X 50	Material: Stereochemical theory includes: geometric isomers in alkenes, geometric isomers in cyclic compounds, conformations of open-chain compounds, forms of cyclic compounds, torms of cyclic comorers, absolute and relative configurations and more than one carbon atom. Reference : <i>Fessenden, RJ</i> and <i>Fessenden, RJ</i> and <i>Fessenden, S</i> (1998).Organic <i>Chemistry.</i> Volume 1. Jakarta: <i>Erlangga</i> Material: Stereochemical theory includes: geometric isomers in cyclic compounds, conformations of open-chain compounds, forms of cyclic compounds, conformers, absolute and relative configurations and more than one carbon atom. Reference : <i>Solomon,</i> <i>TWG & Fryhle,</i> <i>CB</i> (2011).Organic <i>Chemistry.New</i> <i>York: John</i> <i>Wiley& Sons, Inc</i>	5%

6	Explain the nomenclature structure and properties as well as the synthesis of alkyl halogenide compounds as well as the SN-1 and SN-2 reaction mechanisms.	1. Explain the structure of alkyl halide group compounds 2. Explain the physical and chemical properties of alkyl halide group compounds 3. Explain the synthesis reaction of alkyl halide group compounds 4. Explain the mechanism of SN-1 and SN-2 reactions in alkyl halides	Criteria: 1.in accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS and UAS use essay questions. Form of Assessment Participatory Activities	Answer questions, class discussions, completion of project assignments, make a summary (in the form of a mind map or concept map) Practice questions 3 X 50	Material: Alkyl halogenides: structure, nomenclature and properties and synthesis of alkyl halogenide compounds. Reference: Fessenden, RJ and Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga Material: Alkyl halogenides: structure, nomenclature and properties and synthesis of alkyl halogenide compounds. Reference: Solomon, TWG & Fryhle, CB (2011). Organic Chemistry. New York: John Wiley & Sons, Inc.	5%
7	Explain the nomenclature structure and properties as well as the synthesis of alkyl halogenide compounds as well as an introduction to the reaction mechanism SN-1 and SN-2	 1.1. Explain the mechanism of SN1 and SN2 reactions 2.2. Give examples of SN1 and SN2 reaction applications 3.3. Create a synthesis reaction for alkyl mono halogenide compounds. 	Criteria: 1.in accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment : Participatory Activities	3 X 50 discussion question and answer presentation	Material: Alkyl halogenides: structure, nomenclature and properties and synthesis of alkyl halogenide compounds. Reference: Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga	5%

-	[1		1	1	
8	complete UTS	Can complete UTS properly and correctly	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment : Test	UTS 3 X 50	Material: UTS material starti from structure theory, alkane alkenes, and alkynes, stereochemis and alkyl hali compounds. Library: Fessenden, F and Fessende JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga Material: UTS material starti from structure theory, alkane alkenes, and alkene	ng Il Is, Itry, Ie Is, Sing Is, Is, Itry, Ie G G Inc Isw
9	Explain the nomenclature structure and properties of aromatic hydrocarbons and be able to apply substitution reactions for the synthesis of aromatic compounds	 1.1. Explain the molecular structure of aromatic compounds. 2. Explain the relationship between aromatic molecular structure and resonance stability. 3. Explain substitution reactions in aromatic compounds. 4. Explain synthesis reactions in aromatic compounds 2.Describe the structure of monocyclic aromatic hydrocarbons 1. Explain the nomenclature of aromatic hydrocarbons 2. Give the name of the aromatic hydrocarbon according to the rules of nomenclature 	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 20%; UAS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment Project Results Assessment / Product Assessment	Questions and Answers, Class discussions, Case studies on aromatic compounds Presentation on analysis results and case studies related to aromatic compounds 1 X 50	Material: Aromatic hydrocarbons structure, nomenclature properties of aromatic hydrocarbons Reactions of substitution, addition and reaction rules aromatic ring: References: <i>Fessenden, Fh</i> and <i>Fessenden, Fh</i> <i>and Fessenden, JS</i> (1998). <i>Organic</i> <i>Chemistry.</i> <i>Volume 1.</i> <i>Jakarta:</i> <i>Erlangga</i>	in s S

10	Understand the structure, nomenclature, classification of properties, differences and similarities as well as the synthesis of alcohol – phenol – ether compounds.	1. Explain the structure of alcohol- phenol and ether group compounds 2. Explain the physical and chemical properties of alcohol- phenol and ether group compounds 3 Explain the synthesis reaction of alcohol- phenol and ether group compounds	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion Presentation on a case study of the 3 X 50 alcohol- phenol-ether compound	Material: Alcohol – phenol – ether: structure, nomenclature, classification of properties, differences and similarities and synthesis. Uses and applications of alcohol, ether and phenol compounds. Reference: <i>Fessenden, RJ</i> <i>and Fessenden, JS (1998).</i> <i>Organic</i> <i>Chemistry.</i> <i>Volume 1.</i> <i>Jakarta:</i> <i>Erlangga</i>	5%
11	Understand the structure, nomenclature, classification of properties, differences and similarities as well as the synthesis of alcohol – phenol – ether compounds.	 1.1. Classify alcohol compounds based on the number of OH groups in one molecule. 2.2. Differentiate the physical properties of alcohol–phenol–ether compounds. 3.3. Design a reaction to create alcohol–phenol–ether compounds. 4.4. Analyze the uses and disadvantages of alcohol compounds 	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment Project Results Assessment / Product Assessment	Questions and Answers, Class discussions, Project- based learning assignments to make summaries in the form of concept maps, mind maps) Working on LKM based on mind maps 3 X 50	Material: Alcohol, phenol, ether. Reference: Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga Material: Alcohol – phenol – ether: structure, nomenclature, classification of properties, differences and similarities and synthesis. Uses and applications of alcohol, ether and phenol compounds. Bibliography: Solomon, TWG & Fryhle, CB (2011).Organic Chemistry.New York: John Wiley& Sons, Inc	5%

12	Understand the structure, nomenclature, properties and be able to predict isomers and can design to synthesize carbonyl compounds	 1.1. structure of aldehyde and ketone group compounds 2. Explain the physical and chemical properties of aldehyde and ketone group compounds 3. Explain the synthesis reaction of aldehyde and ketone group compounds 2.4. Explain the uses of aldehyde and ketone compounds 	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; UTS with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Questions and Answers, Class discussions, Project- based learning Completion of project assignments making a summary in the form of a concept map or mind map) 3 X 50	Material: Aldehyde ketone ma Referenci, Fessende and Fesse JS (1998) Organic Chemistry Volume 1. Jakarta: Erlangga Material: Aldehyde ketone ma Referenc: Solomon, & Fryhle, (2011).Org Chemistry York: John Wiley& Sc Inc Material: Carbonyl compound include: aldehydes ketones, structure, nomencla properties isomers a compound synthesis. Reference Solomon, & Fryhle, (2011). Org Chemistry York: John Wiley & Solomon, & Fryhle, (2011). Org Chemistry York: John Wiley & Solomon, K Fryhle,	aterial e: m, RJ enden,
13	Explain the structure, nomenclature, isomers, properties, especially acidity and synthesis of carboxylic acids and their derivatives	1. Explain the structure of carboxylic acid group compounds and their derivatives 2. Explain the physical and chemical properties of carboxylic acid group compounds and their derivatives 3. Explain the synthesis reactions of carboxylic acid group compounds and their derivatives	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Questions and Answers, Class discussions, Project- based learning Completion of project assignments making a summary in the form of a concept map or mind map) 3 X 50	Material: Carboxylid derivative material. Referenc Fessende and Fesse JS (1998) Organic Chemistry Volume 1. Jakarta: Erlangga Material: Carboxylid derivative material Referenc Solomon, & Fryhle, (2011).Org Chemistry York: John Wiley& Sc Inc Material: Carboxylid acids: stru nomencla isomers, properties synthesis Carboxylid derivative structure, nomencla isomers, properties synthesis Bibliogra Solomon, & Fryhle, (2011).Org Chemistry York: John Wiley& Sc	e: n, RJ enden,

14	Understand the structure, nomenclature, isomers, properties, especially acidity and synthesis of carboxylic acids and their derivatives	 1.1. Explain the structure and nomenclature of carboxylic acid derivatives 2.2. Explain the reactions that occur in carboxylated acid derivative compounds 3.3. Explain the reaction for making carboxylated acid derivatives 	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Questions and Answers, Class discussions, Project- based learning Completion of project assignments making a summary in the form of a concept map or mind map) 3 X 50	Material: carboxylic acid derivative material. Reference: Fessenden, RJ and Fessenden, RJ Organic Chemistry. Volume 1. Jakarta: Erlangga	5%
15	Explain the structure, nomenclature, properties (basicity), reactions, and synthesis of amine compounds.	1. Explain the structure of amine group compounds 2. Explain the physical and chemical properties of amine group compounds 3. Explain the synthesis reaction of amine group compounds	Criteria: 1.In accordance with the assessment guidelines applicable at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 20%; UAS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Forms of Assessment : Participatory Activities, Project Results Assessment / Product	Questions and Answers, Class discussions, Project- based learning Completion of project assignments making a summary in the form of a concept map or mind map) 3 X 50	Material: Amine: structure, nomenclature, properties and synthesis of amines Reference: <i>Fessenden, RJ</i> and <i>Fessenden,</i> <i>JS</i> (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga	5%
16	complete the UAS with the material that has been studied	can complete the UAS well and correctly	Criteria: 1.In accordance with the assessment guidebook that applies at Unesa 2.Participation with a weight of 20%; Tasks with a weight of 30%; UTS with a weight of 20%; UAS with a weight of 30%; UTS and UAS use multiple choice questions and essays. Form of Assessment : Test	Test method: UAS 2 X 50	Material: Material according to what has been discussed. References: Fessenden, RJ and Fessenden, JS (1998). Organic Chemistry. Volume 1. Jakarta: Erlangga	10%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage							
1.	Participatory Activities	52.5%							
2.	Project Results Assessment / Product Assessment	25%							
3.	Portfolio Assessment	7.5%							
4.	Test	15%							
		100%							

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.